
1 Methods

1.1 Coordinate Descent

In case control studies of disease, affection status is related to a set of genetic and/or environmental covariates

through a vector of regression coefficients, denoted as β. Suppose y stores the vector of binary values for affection

status and x is an n by m matrix of covariates comprised of discrete genotypes (coded as the number of risk

alleles) and/or environmental covariates (treated as continuous values), defined across n subjects and m SNPs.

The probability of affection for subject i is defined as

pi =
1

1 + exp(−βT xiyi)
. (1)

Each element of β is interpreted as the log odds ratio of disease risk for each unit increase of its respective

covariate. The log-likelihood across all observations is then

L(β) =
n

∑

i=1

[yilog(pi) + (1 − yi)log(1 − pi)] (2)

We adopt the penalized regression model described in [Zhou et al., 2010] to incorporate both an L1 penalty and

L2 penalized variable groups (e.g. genes, pathways). The L1 parameter (denoted λL) enforces sparsity, while the

L2 parameter (denoted λE) encourages variables mildly correlated to a strong predictor within a group to enter

the model. Our goal is to minimize the objective function

f(β) = −L(β) + λL||β||1 + λE

∑

G

||βG||2. (3)

This parameterization is a generalization of several well-known methods. For example, setting λE = 0 reduces

Eq 3 to the original LASSO [Tibshirani, 1996] whereas including all variables into the set G reduces Eq 3 to the

elastic net [Zou and Hastie, 2005].

Regularized regression is usually solved using cyclic coordinate descent (CCD) [Zhang and J. Oles, 2001]. At

each variable j, CCD updates βj as

βnew
j = zj = βj −

f ′(βj)

f ′′(βj)
(4)

1

, where the first derivative is

f ′(βj) =
df(zj)

dz

∣

∣

∣

∣

z=βj

=

n
∑

i=1

xijyi

1

1 + exp(βT xijyi)
− λLsgn(βj) − λE











βj

||βG||2
, ||βG||2 > 0

sgn(βj) ||βG||2 = 0
(5)

and the second derivative is

f ′′(βj) =
d2f(zj)

d2z

∣

∣

∣

∣

z=βj

=

n
∑

i=1

x2

ij

exp(βT xiyi)

1 + exp(βT xiyi)2
+ λE











1

||βG||2
(1 −

β2

j

||βG||2
2

), ||βG||2 > 0

0 ||βG||2 = 0
(6)

Each element update of the vector β updates the length n vector of fitted values xβ. CCD traverses the set of

variables over multiple cycles until a convergence criterion is reached (e.g. the likelihood improvement between

cycles is sufficiently small). In a review article, Wu and Lange described a slight variation on CCD called greedy

coordinate descent (GCD) [Wu and Lange, 2008]. Rather than update the vector β, GCD keeps track of the

updated likelihood at index j after evaluating Eq 4. After evaluating all p variables, β is updated at the index

corresponding to the largest increase in the likelihood. In contrast to CCD, which exposes parallelism across

subjects, GCD offers the opportunity to carry out calculations in parallel across both subjects and variables.

1.2 OpenCL kernels

One feature that distinguishes our software from the majority of available GPU software releases, which

is implemented in nVidia’s proprietary CUDA library [nVidia, 2011], is our decision to develop parallel code

using OpenCL [Khronos, 2011]. OpenCL’s support across the key hardware manufacturers ensures that OpenCL

programs will require minimal configuration changes when targeting a wide range of hardware, including GPU

devices from ATI or nVidia, or massively parallel CPUs that are currently being developed by Intel and AMD.

OpenCL programs follow a heterogeneous computing model. That is, components of an algorithm that can

execute in parallel on an SIMD device such as a GPU are implemented in routines, called kernels, that can be

invoked by serial host code. Kernels execute data-parallel instructions so that at each clock cycle, calculations are

processed in a lock-step manner across distinct work-items, an abstraction that maps computing cores to distinct

memory addresses (e.g. registers, elements of an array). OpenCL defines an explicit memory model so data must

2

packedgeno[0] packedgeno[31]

...

...

[0] [1] [2] [3] [496][497[498][499] [508][509][510][511]

1222 1 −1 2 0...

floatgeno[512]

globalgeno[]

LOCAL MEMORY

128 byte transaction

2 2 2 1 1 −1 2 0

[12][13][14][15]

...

00 10 11 0101 10 10 10 ...
charvec[3]charvec[0]

00 10 11 0101 10 10 10 ...
charvec[3]charvec[0]

Figure 1: Decompressing genotypes from a single memory load transaction

explicitly be moved by programmers between layers of a memory hierarchy. On GPU devices, global memory is

scoped across all work-items, local memory is scoped only within the work-group that a work-item is assigned to,

and each register is scoped only to a specific work-item. Global memory is the most abundant memory space,

while local memory and register space is far scarcer (64kB on high end devices). Global memory has up to two

orders of magnitude greater latency than the latter two memory spaces, so good programming practice includes

moving data into fast memory as early as possible during kernel routines.

It is vital that large datasets be stored efficiently in global memory, and compacted if possible, since even

the most advanced GPU devices at the time of writing contain less than 2.5 GB of memory. Fortunately, SNP

genotype data can be easily compressed, given the 3 possible cases plus “no-calls”. One strategy is to declare

genotypes in memory as a large array of character primitives, where each byte stores four genotypes. However,

this strategy utilizes only 25% of the available bandwidth between global and local memory, since work-items

fetch/store a minimum of 4 bytes when accessing global memory. Our approach is to declare an array of custom

containers so that each container stores a cluster of four genotypes:

t y p ed e f s t r u c t {
cha r geno [4] ;

} a t t r i b u t e ((a l i g n e d (4))) packedgeno t ;

After transferring elements from a global array to a local array, data can quickly be decompressed using up

to three bit shift operations and a single mask operation. The decompression step executes in parallel, storing

results in a second local array of floats as illustrated in Figure 1. Hence, each set of 32 packed genotype elements,

stored in global memory, decompress into 512 floating point genotypes in local memory.

As alluded to above, work-items are organized into work-groups, arranged in a three dimensional lattice called

a work-group. Work-groups themselves are also organized in a three dimensional lattice. The dimensions of the

3

Z dim = p/1024

Y dim = n/512+1

X dim= 1024512
workitems

512
workitems

512
workitems

512
workitems

512
workitems

Figure 2: Work-group layout for GCD

[0] [1] [511][256][255][254]

[0] [127] [128] [129][1] [254]

[0] reduced result

(log2 reductions)

Figure 3: log2 reduction for summing array elements

lattices at both levels are defined by the programmer in order to make the most effective use of available cores

and memory resources. On GPUs, instructions in work-groups are executed asynchronously and in any order. This

leads to huge gains in efficiency as the level of parallelization increases, since memory latency in some work-groups

is masked by calculations being made in other work-groups.

For parallel GCD, covariate values at a variable are divided into blocks of 512 elements, and stored in local

memory so that each work-group can operate on a particular block of memory. Work groups compute contributions

to statistics such as the likelihood (Eq 2), first (Eq 5), and second (Eq 6) derivative. Figure 2 illustrates how we

organize work-groups and work-items for GCD. Work-items have an x-dimension of 512, and y,z dimensions of 1.

Work-groups have a x-dimension of 1024 (representing blocks of the p variables), a y-dimension of n/512+1, and

a z-dimension of p/1024.

Calculations that aggregate across elements of an array, such as summations or max-operators, can take

advantage of moderate parallelization. A common practice in parallel programming is to perform a log2 reduction.

4

For any array of size that is a power of 2, elements in the second half of the array can be “collapsed” into the

first half. The procedure is recursively repeated on the first half until the terminating condition at which the final

value is stored in the first element. Figure 3 illustrates this concept.

1.3 Distributed MPI algorithm

For especially large problems such as impending GWAS-Seq data, it may be necessary to pool computing and

memory resources from multiple GPU devices. OpenCL exposes an API that allows host code to access multiple

devices on a host. Implementing MPI (message passing interface) routines achieves the same purpose but would

seamlessly scale across multiple hosts. MPI is an open standard that enables multiple processors (locally or across

hosts) to communicate amongst each other. Our MPI implementation is conceptually straightforward. The MPI

master node is the entry point of the algorithm. After loading configuration and study data into memory, it

partitions the design matrix of covariate values into submatrices, which are then transferred to all available slave

nodes for initialization. Each slave node carries out parallel GCD on its own subproblem, followed by a max

reduction step at the MPI master. The following pseudocode describes our algorithm more explicitly:

while not converged do

Broadcast j∗: index of best variable from previous iteration

for host = 1 → slavehosts, in parallel do

xβ = xβ + x−j∗∆βj∗

for all j ∈ varblock[host], in parallel do

for all k ∈ subjectblocks, in parallel do

for all i ∈ subjectblocks[k], in parallel do

compute subject i’s contribution to sub-gradient,sub-hessian at variable j using Eq 5 and Eq 6

end for

end for

Sum over subject specific gradient and hessian via log2 reduction

end for

for all j ∈ varblock[host], in parallel do

for all k ∈ subjectblocks, in parallel do

for all i ∈ subjectblocks[k], in parallel do

5

10000011−1000 −1100000
2000001
−2100000

2900001
−3000000

Node:

Variable: −1000000
999001

−2000000
1900001

1 1000 1010 1011 10201001

Intel Xeon E7−8870
1000 node CPU cluster 10 node GPU cluster

ATI Radeon HD5870
10 node GPU cluster
nVidia Tesla M2050

MPI master node
with >=8GB RAM

Figure 4: Using MPI to coordinate the LASSO optimization

compute subject i’s contribution to likelihood at variable j using Eq 2

end for

end for

Sum over subject specific likelihood via log2 reduction

end for

Apply a max operator for variable with highest likelihood increase, store as best variable j∗

end for

Update β∗
j on host

end while

Our MPI framework enables data and computations to be load balanced across multiple cores on a single

desktop or processors on a large cluster, such as the heterogeneous cluster depicted in Figure 4. In this hypothetical

example, the last 20 nodes, each assigned to fit 100,000 variables are OpenCL enabled, making use of massively

parallel GPU resources; each of the first 1000 nodes fit far less variables, but could be moderately accelerated

using parallel constructs optimized for multi-core CPUs such as OpenMP [OpenMP, 2011].

1.4 Rare variant simulation

The Genetic Analysis Workshop 17 [Ziegler et al., 2011] provided participants with genotypes across 24,487

SNPs on 697 individuals, taken from Pilot 3 of the 1000 Genomes Project. The genotypes were called using

the Unified Genotyper method of the Genome Analysis Toolkit (GATK) package [DePristo et al., 2011]. For our

6

Distribution of MAFs across 100 causal variants

MAF

Fr
eq

ue
nc

y

0.0 0.1 0.2 0.3 0.4 0.5

0
5

10
15

20
25

30
35

Figure 5: Distribution of MAFs across 100 causal SNPs

simulations, we chose 10 genes at random, and among each of them 10 SNPs at random, for a total of 100 causal

SNPs, each assigned to have a relative risk of 2.0. Figure 5 shows the distribution among these causal SNPs. The

small relative risk ensured that rare causal SNPs would be difficult to detect unless prior biological knowledge (i.e.

gene annotations) could facilitate their inclusion into the model through their L2 norm. The receiver operating

curve was plotted by estimating the true and false discovery rates for both a mixed penalty (i.e. λL = λE) and

a pure L1 penalty, taken across 100 simulation replicates. We did not extensively explore a full range of L1 to

L2 ratios in this simulation. Rather, we simply chose parameter values based on ROCs from simulations in [Zhou

et al., 2010], suggesting that a λL to full penalty (i.e. λL + λE) ratio of .5 yields superior power compared to

pure L1 or L2 based penalties at low FDR levels.

1.5 Stability Selection for GWAS

Stability selection was developed by Meinhausen and Bühlmann to address the issue of model overfitting in the

setting of L1 penalized regression [Meinshausen and Bühlmann, 2010]. A models is fit to each random subsample

(generally half) of the entire dataset over a set Λ of penalty values λL. Variables are declared “stable” if the

proportion of subsamples containing the variable is at least as large as a threshold, or formally:

Ŝstable = {k : max
λL∈Λ

Π̂λL

k ≥ πthr} (7)

One important feature of stability selection is the ability to provide error control. The expected number V of

7

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.505 0.51 0.515 0.52 0.525 0.53 0.535 0.54

Fa
ls

e
di

sc
ov

er
y

ra
te

Threshold

Avg number of variables=273

Figure 6: False discovery rate as a function of stability selection threshold

falsely selected variables is:

E(V) ≤
1

2πthr − 1

q2

Λ

p
(8)

where qΛ is the average number of selected variables taken across all replicates, over the set Λ. Determining the

set of stable variables according to Eq 7 can pose a heavy computational burden since at each replicate, each

model is fit across multiple values of λL. This leads to impractical run times, even with parallel implementations.

The authors point out however, for methods such as the LASSO where the probability of inclusion is a monotonic

function with respect to decreasing values of λL, it is sufficient to choose a small enough value of λ′
L such that the

true set of variables ŜλL under the true value of λL is contained within the larger set Ŝλ′

L with high probability.

In other words, by allowing moderate overfitting, we can apply the method as defined in Eq 7 where the set Λ

contains only value λ′
L.

For the African American GWAS data, each replicate’s value of λ′
L was set at 100, which resulted in 273

variables being selected on average (i.e. qΛ=273). Note that because we did not include L2 penalties, λE is set

to zero. Based on λ′
L=100, one can get a sense of error control as a function of the threshold πthr, as shown in

Figure 6.

1.6 Framework Use

We now walk the reader through source code for a program that makes use of our C++ framework. The

Stability class, which implements Stability Selection, is a sub-class of the MpiLasso2 class, which itself handles

details such as loading XML configuration files, parsing standardized format data files (e.g. PLINK files [Purcell

et al., 2007]), communicating amongst MPI nodes, and executing OpenCL kernels on GPUs. One can refer to

8

the code for Power.cpp, which implements the rare variant analysis, at the Google Code site.

The header file below defines a container called stability settings t that is an extension of the XML container

defined in MpiLasso2.hpp. Configuration settings that are relevant to the analysis can be defined by the user

here, mapping to corresponding XML tags in the configuration file.

Stability.hpp

c l a s s s t a b i l i t y s e t t i n g s t : p u b l i c l a s s o 2 s e t t i n g s t {
p u b l i c :

s t a b i l i t y s e t t i n g s t (con s t p t r e e & pt , i n t mpi rank) ;
i n t r e p l i c a t e s ;
s t r i n g mask basepath ;

} ;

c l a s s S t a b i l i t y : p u b l i c MpiLasso2{
p u b l i c :

S t a b i l i t y () ;
˜ S t a b i l i t y () ;
v o i d i n i t (con s t p t r e e & pt) ;
v o i d run () ;

p r i v a t e :
i n t ∗ va r c oun t s ;
i n t t o t a l t a s k s ;
v e c to r <s t r i n g > varnames ;
i n t ∗ mask ;

} ;

The C++ class listed below initializes analysis by loading configuration settings, PLINK formatted data files,

and other ancillary files. The initialization routine also performs the important tasks of initializing all MPI

data structures, GPU memory buffers, and transfer of partitioned datasets to the computing nodes. The actual

execution of the Stability Selection algorithm carries out a loop which reads a mask file at each iteration that

informs the optimizer of which subjects to include for that iteration. The routine concludes by writing to the

output file selection probabilities for a given value of λL.

Stability.cpp

#inc l ud e <c s t d l i b >

#inc l ud e <c s t r i n g >

#inc l ud e <i o s t r eam>

#inc l ud e <ss t ream>

#inc l ud e <f s t r eam>

#inc l ud e <math . h>
#i f d e f USE GPU
#in c l ud e <CL/ c l . hpp>

9

#i n c l u d e ” c l s a f e . h”
#e n d i f
#i n c l u d e ”main . hpp”
#i n c l u d e ” a n a l y z e r . hpp”
#i n c l u d e ” i o . hpp”
#i n c l u d e ” d imens ion2 . h”
#i n c l u d e ” u t i l i t y . hpp”
#i n c l u d e ” l a s s o mp i 2 . hpp”
#i n c l u d e ” s t a b i l i t y . hpp”

u s i n g namespace s td ;
t y p ed e f uns i gned i n t u i n t ;

// ex t end s the XML c o n f i g u r a t i o n f i l e c o n t a i n e r f o r LASSO s e t t i n g s
// s p e c i f i c to S t a b i l i t y S e l e c t i o n

s t a b i l i t y s e t t i n g s t : : s t a b i l i t y s e t t i n g s t (con s t p t r e e & pt , i n t mpi rank) :
l a s s o 2 s e t t i n g s t (pt , mp i rank){

r e p l i c a t e s = pt . get<i n t >(” subsamp le s ”) ;
mask basepath = pt . get<s t r i n g >(” i npu tda t a . mask basepath ”) ;

}

S t a b i l i t y : : S t a b i l i t y () : MpiLasso2 (){}

S t a b i l i t y : : ˜ S t a b i l i t y (){
d e l e t e s e t t i n g s ;

}

vo i d S t a b i l i t y : : i n i t (con s t p t r e e & pt){
// For l o a d i n g c o n f i g u r a t i o n s e t t i n g s
s e t t i n g s = new s t a b i l i t y s e t t i n g s t (pt , t h i s −>g e t r a n k ()) ;
o f s <<”P la t fo rm ID : ”<< s e t t i n g s −>p l a t f o rm i d <<end l ;
o f s <<”Dev ice ID : ”<< s e t t i n g s −>d e v i c e i d <<end l ;
o f s <<”Ke rne l Path : ”<< s e t t i n g s −>k e r n e l p a t h <<end l ;
// Read data f i l e s
r e ad da t a (s e t t i n g s −>s n p f i l e . data () , s e t t i n g s −>p e d f i l e . data () ,
s e t t i n g s −>g e n o f i l e . data () , s e t t i n g s −>c o v a r i a t e d a t a f i l e . data () ,
s e t t i n g s −>c o v a r i a t e s e l e c t i o n f i l e . data () ,NULL) ;
r e a d t a s k s (s e t t i n g s −> t a s k l i s t . data () , s e t t i n g s −>a n n o t a t i o n f i l e . data ()) ;
varnames = get ta sknames () ;
t o t a l t a s k s = varnames . s i z e () ;
v a r c oun t s = new i n t [t o t a l t a s k s] ;
o f s <<”There a r e ”<< t o t a l t a s k s <<” t o t a l t a s k s \n ” ;
a l l o c a t e d a t a s t r u c t u r e s () ;
s end pheno type s () ;
s e n d c o v a r i a t e s () ;
s end geno t ype s () ;
s end tun i ng pa r ams () ;

}

vo i d S t a b i l i t y : : run (){

10

s t a b i l i t y s e t t i n g s t ∗ s e t t i n g s =
s t a t i c c a s t < s t a b i l i t y s e t t i n g s t ∗ >(t h i s −>s e t t i n g s) ;
f o r (i n t i =0; i<t o t a l t a s k s ;++ i) v a r c oun t s [i] = 0 ;
f o r (i n t r e p l i c a t e = 0 ; r e p l i c a t e <s e t t i n g s −> r e p l i c a t e s ;++ r e p l i c a t e){

o s t r i n g s t r e am os s ;
oss<<s e t t i n g s −>mask basepath <<”.”<< r e p l i c a t e ;
r e ad da t a (NULL ,NULL ,NULL ,NULL ,NULL , o s s . s t r () . data ()) ;
send mask () ;
doub l e logL ;
v ec to r <mode l v a r i a b l e t > mod e l v a r i a b l e s ;
f i t L a s s oG r e e d y (r e p l i c a t e , logL , mod e l v a r i a b l e s) ;
i f (i s m a s t e r){

o f s <<”REPLICATE :\ t”<< r e p l i c a t e <<end l ;
o f s <<”LAMBDA:\ t”<< s e t t i n g s −>lambda<<end l ;
i n t mode l s i z e = mod e l v a r i a b l e s . s i z e () ;
f o r (i n t i =0; i<mode l s i z e ;++ i){

++va r coun t s [mod e l v a r i a b l e s [i] . i n d e x] ;
}

}
}
i f (i s m a s t e r){

f o r (i n t i =0; i<t o t a l t a s k s ;++ i){
o f s <<”S e l e c t i o n p r o b a b i l i t i e s :\ n ” ;
i f (v a r c oun t s [i]>0){

o f s<<varnames [i]<<”:\ t ”<<1.∗ va r c oun t s [i] / s e t t i n g s −>r e p l i c a t e s <<end l ;
}

}
}
c l eanup () ;

}

References

DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., Philippakis, A. A., del Angel, G., Rivas, M. A., Hanna, M., McKenna,

A., Fennell, T. J., Kernytsky, A. M., Sivachenko, A. Y., Cibulskis, K., Gabriel, S. B., Altshuler, D., and Daly, M. J. (2011). A framework for variation

discovery and genotyping using next-generation DNA sequencing data. Nat. Genet., 43, 491–498.

Khronos (2011). Khronos group. http://www.khronos.org.

Meinshausen, N. and Bühlmann, P. (2010). Stability selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(4),

417–473.

nVidia (2011). nvidia cuda. http://www.nvidia.com/object/cuda_home_new.html.

OpenMP (2011). Openmp. http://openmp.org/wp/.

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, P., de Bakker, P. I., Daly, M. J., and Sham, P. C.

(2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet., 81, 559–575.

11

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58(1), pp.

267–288.

Wu, T. T. and Lange, K. (2008). Coordinate descent algorithms for lasso penalized regression. Annals of Applied Statistics, 2, 224–244.

Zhang, T. and J. Oles, F. (2001). Text categorization based on regularized linear classification methods. Inf. Retr., 4, 5–31.

Zhou, H. et al. (2010). Association screening of common and rare genetic variants by penalized regression. Bioinformatics, 26, 2375–2382.

Ziegler, A., MacCluer, J. W., and Almasy, A. (2011). Genetic Analysis Workshop 17: Approaches to Analysis of Next-Generation Sequencing Data.

Genetic Epidemiology (in press), 35(8).

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 67(2), 301–320.

12

